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Introduction

Dozens of genetic variants associated with late-onset Alzheimer’s disease (LOAD) have been identified
by genome-wide association studies (GWAS). However, these are only tag markers for nearby genetic
variants in linkage disequilibrium (LD) and may not be actually functional. Moreover, all 21 of the
significant variants identified in phase 1 of the International Genomics of Alzheimer’s Project (IGAP)
meta-analysis [1] are in non-protein-coding regions, implicating gene regulatory mechanisms as under-
lying the association signals. These considerations suggest a need for functional annotation of expanded
sets of variants spanning the LD blocks tagged by the IGAP variants in order to identify the truly causal
variants, their effects on regulatory mechanisms, the tissue context of this regulation, the affected target
genes, and the direction of these effects on gene expression.

To address this need, we developed a novel tool, called INFERNO (INFERring the molecular mecha-
nisms of NOncoding genetic variants). Given a list of tagging variants, INFERNO uses 1,000 Genomes
Project [2] data to define LD blocks. Expanded sets of variants are annotated with:

• Sites of enhancer RNA (eRNA) transcription across 112 tissue facets from FANTOM5 [3]

• ChromHMM-defined epigenetic enhancer states across 127 tissues and cell types from Roadmap
Epigenomics [4]

• Transcription factor binding sites (TFBSs) for 332 transcription factors predicted by HOMER [5]

Tissues and cell types from each data source are grouped into 32 broad tissue categories for cross-data
source comparison, and empirical p-values for the enrichment of functional overlaps in each tissue cat-
egory and tag region are obtained by background sampling. Co-localization analysis is then performed
to identify shared causal signals underlying both the IGAP GWAS signals and GTEx expression quanti-
tative trait loci across 44 tissues [6] in order to characterize the affected target genes and tissue contexts.

Application of INFERNO to Alzheimer’s Disease Genetic Signals
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Figure 1: Flowchart of analysis approach

We applied INFERNO to 19 noncoding variants associated with late-onset Alzheimer’s Disease
(LOAD) identified in phase 1 of IGAP, excluding the variant in the DSG2 region, which did not repli-
cate, and the variant in the HLA region, which is notoriously hard to analyze. We defined an expanded
set of 496 variants by identifying all variants within 500 kb of any tag SNP with p-value within one
order of magnitude of the top p-value. Then we subjected this set to LD pruning, yielding 52 variants,
which were submitted as input to the INFERNO tool. After LD re-expansion, 1,044 unique variants
were analyzed for regulatory potential.
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Figure 2: Visualization of enhancer overlaps reveals enrichment for blood
category overlaps, implicating immune activity. eRNA Enh: FANTOM5 En-
hancer. HMM Enh: Roadmap Enhancer state defined by ChromHMM
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Figure 3: Empirical p-values for tissue and anno-
tation overlap combinations based on 10,000 back-
ground samples supports blood and connective tis-
sue (fibroblast) signals

Co-localization analysis with GTEx eQTLs

Direct overlap with GTEx eQTL data found 750 variants across 16 tag regions that were significant
eQTLs, but these direct overlaps are subject to LD biases, so we instead used the COLOC Bayesian
method [7] to identify GWAS and eQTL signals sharing a causal variant (H4). We applied COLOC to
eQTL signals for 876 unique genes across all 19 tag regions (median number of genes tested in each
region = 33) for a total of 24,963 tests of GWAS - eQTL co-localization. This identified 154 sets of tag
regions, tissues, and target genes with a high probability (P (H4) >= 0.5) of having a shared causal sig-
nal, across 15 tag regions, 37 tissues, and 67 target genes. This model also provides Approximate Bayes
Factors (ABFs) representing the probability that a given variant is the shared causal variant, which we
use in addition to TFBS overlap to prioritize individual variants for validation.
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Figure 4: Integration with functional annotations prioritizes variants
overlapping enhancers from concordant tissue classes with motif over-
laps, high ABF values, or both

Scale
chr7:

Direct GTEx Overlaps

BLD.CD14.PC ChromHMM
BRST.MYO ChromHMM

ESC.I3 ChromHMM

SINE
LINE
LTR
DNA

Simple
Low Complexity

Satellite
RNA

Other
Unknown

Rhesus
Mouse

Dog
Elephant

Opossum
Chicken

X_tropicalis
Zebrafish

2 kb hg19
143,109,000 143,109,500 143,110,000 143,110,500 143,111,000 143,111,500 143,112,000 143,112,500 143,113,000 143,113,500

macrophage
monocyte

Nkx2.5(Homeobox)
CEBP(bZIP)

EPHA1-AS1

Mammal Cons
4 _

-4 _

GERP
4.08 _

-8.06 _

0 -

M a jo r &Alle le &(C ) M in o r &Alle le &(G ) M in P N e g a t iv e &C o n tr o l
0

2

4

6

8

rs 1 1 7 6 5 3 0 5 &K 5 6 2 &L u c ife ra s e &A s s a y

N
o
rm

a
li
ze
d
&L
u
c
/R
e
n

*

Figure 4. Luciferase assay results for rs11765305 in K562 cells, a leukemia of monocyte precursors. 
Luciferase expression is normalized against Renilla expression in the same well. Asterisk represents 
statistically significant luciferase expression at the 0.05 level. Negative control is a randomly sampled 
heterochromatin insert.  

Figure 5: Genome browser shot of the EPHA1
region including rs11765305, a strong eQTL
for the EPHA1-AS1 lncRNA, and luciferase
assay results in K562 cells, a leukemia of
monocyte precursor cell line. Asterisk repre-
sents statistically significant luciferase expres-
sion at the 0.05 level

Summary table of top prioritized results

Tag Region Affected mechanism and evidence Direction of effect

ABCA7
Digestive system regulation of ABCA7 and CNN2,

high ABF variant
Risk allele, ↑ABCA7 and CNN2

expression
BIN1 Lymphocyte regulation of BIN1, high ABF variant Risk allele, ↑ BIN1 expression

CASS4
HOXD13-mediated enhancer with blood eQTL for

CASS4, High ABF variant for digestive CASS4
eQTL

Protective allele, ↓ blood, ↑ fibroblasts

CD2AP
Strong homeobox TF disruption in enhancer for

RP11-385F7.1 in blood and brain, affecting GTPase
signaling

Risk allele, ↓ brain, other tissues

CD33
Whole blood regulation of CD33, tag variant

colocalized with eQTL, high ABF variant
Protective allele ↓ CD33 expression

CELF1
Brain signal for RP11-750H9.5, moderate TF
disruption, affecting immune regulatory hub

Risk allele, ↓ lncRNAs

EPHA1

Very strong ABF for rs11765305 affecting
EPHA1-AS1 (→ JAK2) and two taste receptor
signals in blood (monocytes) with strengthened

CEBP motif

Protective allele, ↑↑ EPHA1-AS1
expression

INPP5D
Blood signal for INPP5D, strong disruption of

Homeobox TFs and moderate on other TFs
Risk allele, ↓ INPP5D expression

ZCWPW1
One SNP strongly disrupts several motifs and

colocalizes with GTEx brain eQTLs for GAL3ST4,
PVRIG, and STAG3

Protective allele, varying regulatory effects

Conclusions
The INFERNO tool provides an easy and powerful approach for inferring the molecular mechanisms of
noncoding genetic variants. We have implemented INFERNO in an efficient pipeline with source code
and access to a web server version that will be available at http://lisanwanglab.org/INFERNO.
The application of INFERNO to the analysis of LOAD-associated noncoding genetic signals identified
a small number of putatively causal variants with strong functional evidence, and the significant en-
richment of functional overlaps in the blood and connective tissue categories supports the hypothesis of
immune activity as an important aspect of LOAD pathology.

Methods
INFERNO is implemented using Python, R, and bash. Datasets from each consortium were grouped into tissue categories based on the categorization provided by Roadmap and the CL ontology. For bootstrapping,
variants were matched on minor allele frequency (bin size 0.01), distance to the nearest TSS (rounded to 1kb), and the number of LD partners. Multiple testing correction was performed using the Benjamini-Hochberg
procedure. Co-localization analysis used the COLOC R package and a custom script to analyze genes tested with each tag variant across all GTEx tissues.
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