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Motivation
•GWAS-identified variants tag linkage disequilibrium (LD) blocks of potentially functional

variants, many of which are not causal

•Most GWAS variants are noncoding and may affect transcriptional regulatory elements

• Transcriptional enhancers are context-specific and annotations are incomplete, so information
must be integrated across tissue contexts and data sources to identify affected regulatory mech-
anisms

• To translate GWAS findings into therapeutics, the target gene expression changes underlying
disease risk must be identified

• The field lacks an integrative tool to identify functional variants, the specific regulatory ele-
ments they affect, the relevant tissue context, and the affected target genes

INFERNO - INFERring the molecular mechanisms of NOncoding
genetic variants

Figure 1: Schematic of INFERNO

• Sets of all putatively causal variants are generated
by p-value and LD expansion

• Tissues and cell types from each functional ge-
nomics data source are grouped into 32 broad tis-
sue categories for cross-data source comparison

• Empirical p-values for the enrichment of func-
tional overlaps in each tissue category are ob-
tained by sampling control variants matched on
LD block size, distance to nearest gene, and MAF

• To improve on direct eQTL overlap, which is
biased by LD structure, INFERNO applies the
COLOC Bayesian method [1] for co-localization
analysis of GWAS and GTEx eQTL signals

• Co-localization analysis often identifies lncRNA
eQTL targets, so GTEx RNA-seq data across
11,439 tissue samples is used to compute
lncRNA - mRNA expression correlations and
identify targeted mRNAs

• INFERNO is available as an open
source software tool and Docker image
(https://bitbucket.org/alexamlie/inferno)

• Top variant expansion and annotation over-
lap analysis is provided on a web server
(http://inferno.lisanwanglab.org)

Data sources for landscape analysis application of INFERNO

Phenotype Acronym Number of input variants Citation
Frontotemporal dementia FTD 7 significant [2]
Corticobasal degeneration CBD 7 significant [3]

Amyotrophic lateral sclerosis ALS 7 significant [4]
Parkinson’s disease PD 23 significant [5]
Alzheimer’s disease IGAP 19 significant [6]

Progressive supranuclear palsy PSP 7 significant, 12 suggestive Wang et al., unpublished
Attention deficit hyperactivity disorder ADHD 7 suggestive [7]

Autism spectrum disorder ASD 51 suggestive Preliminary results, 2015
Bipolar disorder BIP 43 significant [8]

Major depressive disorder MDD 11 suggestive [9]
Schizophrenia SCZ 111 significant [10]

All psychiatric phenotype data come from the Psychiatric Genomics Consortium (PGC)
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Figure 2: The number of unique variants for each phenotype after p-value expansion, LD pruning, and LD re-expansion

Cross-phenotype analysis results
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Figure 3: Summary of annotation overlap, co-localization, and enhancer sampling-based enrichment across tissue categories
and phenotypes. Enrichments defined as adjusted p-value≤ 0.05, across all tag regions (∗) or in at least one (5). Co-localized
eQTL (♦) defined as at least one strongly co-localized (P (H4) ≥ 0.5) eQTL - GWAS signal in a tissue class

Tissue-specific pathway enrichments of SCZ lncRNA targets

Viral myocarditis
Ubiquitin mediated proteolysis

Type I diabetes mellitus
Toll−like receptor signaling pathway

Th1 and Th2 cell differentiation
Th17 cell differentiation

T cell receptor signaling pathway
Spliceosome

RNA transport
RNA degradation

Pyrimidine metabolism
Primary immunodeficiency

Phosphatidylinositol signaling system
Nucleotide excision repair

NF−kappa B signaling pathway
Neurotrophin signaling pathway

Natural killer cell mediated cytotoxicity
mRNA surveillance pathway

Measles
MAPK signaling pathway

Malaria
Lysine degradation

Leukocyte transendothelial migration
Intestinal immune network for IgA production

Inositol phosphate metabolism
Inflammatory bowel disease (IBD)

HTLV−I infection
Homologous recombination

Herpes simplex infection
Hematopoietic cell lineage
Graft−versus−host disease

Fanconi anemia pathway
DNA replication

Cytosolic DNA−sensing pathway
Cytokine−cytokine receptor interaction

Chemokine signaling pathway
Chagas disease (American trypanosomiasis)

Cell cycle
Cell adhesion molecules (CAMs)

Base excision repair
Basal transcription factors

Autoimmune thyroid disease
Apoptosis

Antigen processing and presentation
Allograft rejection

Adip
os

e
Bloo

d

Bloo
d_

Ve
sse

l
Brai

n
Brea

st

Dige
stiv

e

End
oc

rin
e

Epit
he

lial

Fe
male

_R
ep

rod
uc

tive Hea
rt

Lu
ng

Nerv
ou

s

lncRNA tissue class

KE
G

G
 p

at
hw

ay

0.01

0.02

0.03

0.04

FDR

Figure 4: KEGG pathway enrichments for 6,005 total strongly correlated mRNA targets of 46 lncRNAs targeted by eQTLs
co-localized with SCZ GWAS signal, split by tissue class of lncRNA eQTL signal

Conclusions
The INFERNO tool provides an easy and powerful approach for inferring the molecular mecha-
nisms of noncoding genetic variants. We have implemented INFERNO in an efficient open source
pipeline and Docker image (https://bitbucket.org/alexamlie/inferno). A web server that takes in top
variants and expands them by LD and performs annotation overlap and summary is available at
http://inferno.lisanwanglab.org.
The application of INFERNO to a range of psychiatric and neurodegenerative phenotypes identified
putatively causal variants and the regulatory elements they disrupt, characterized the relevant tissue con-
texts in a hypothesis free manner, and identified the affected target genes in a sensitive manner. Applica-
tion to schizophrenia recovered known schizophrenia-associated pathways including MAPK signaling,
splicing, and Herpes infection.

Methods
INFERNO is implemented using Python, R, and bash. Datasets from each functional genomics consortium were grouped into tissue categories based
on the categorization provided by Roadmap and the CL ontology. For enhancer sampling-based enrichment analysis, variants were matched on minor
allele frequency (bin size 0.01), distance to the nearest TSS (rounded to 1kb), and the number of LD partners. Strong lncRNA correlation is defined
as |Cp| ≥ 0.5 & |Cs| ≥ 0.5 where Cp is Pearson correlation and Cs is Spearman correlation. Multiple testing correction was performed using the
Benjamini-Hochberg procedure. All summary statistics were obtained directly from the authors except for the IGAP and PGC datasets, obtained from
the IGAP consortium and from the PGC downloads page (https://www.med.unc.edu/pgc/results-and-downloads/downloads).
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